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Exercise 1: Background review 1 (Properties of
Expectation and Variance)

Let X and Y be independent random variables with E(X ) = V(X ) = 1 and
E(Y ) = V(Y ) = 2. Optional: Can you think of a general family of
distributions that could generate such random variables?

Calculate:

E(3X + Y )

E(3X ∗ Y )

V(3X + Y )

V(3X ∗ Y )
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Exercise 2: Background review 2 (Jacobian
Theorem, Lecture 10 Stat 609, 2020)

Let X1,X2 i.i.d. Exp(λ) with rate parametrization. Let Y1 = X1
X1+X2

and
Y2 = X1 + X2

a) Write down the possible values of Y1 and Y2

b) Find the joint density for (Y1,Y2)

c) Find the marginal densities for Y1 and Y2

d) Are Y1 and Y2 independent?
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Exercise 3: Convergence of random variables (Final
Exam Stat 609, 2020)

Let X1, . . . ,Xn i.i.d. Exp(1/2) with rate parametrization

Let Y1, . . . ,Yn i.i.d. Pois(µ)

Let X̄n = 1
n

∑n
i=1 Xi and Zn = 1

n
∑n

i=1 Y 2
i

Find the limiting distribution of Wn = [
√

n(
√

X̄n −
√

2)]−1Z 2
n
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An application of convergence in probability
(Consistency)
A reasonable point estimator is expected to perform better, at least on
average, if more information about the unknown population is available.

Tn is a consistent estimator of g(θ) if, for every ε > 0 and any θ ∈ Θ,
limn→∞ P(|Tn − g(θ)| ≥ ε) = 0 i.e. if it converges in probability

How do we show an estimator is consistent? 4 usual methods:
1 Evaluate P(|Tn − g(θ)| ≥ ε) directly and fids its limit as n→∞
2 Invoke the LLN (sample moments converge in probability to population

moments, under mild assumptions)
3 Use Continuous mapping theorem: if you know Sn is consistent for θ,

then, for any continuous function g , Tn := g(Sn) is consistent for g(θ)
4 Thm 10.1.3: Tn is a consistent estimator of g(θ) if, for any θ ∈ Θ,

limn→∞ Bias(Tn; θ) = 0 and limn→∞ Var(Tn) = 0
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Exercise 1: Consistency

Let X1, . . . ,Xn i.i.d. from a distribution with pdf

f (x) = 1
2(1 + θx) · I(−1 < x < 1)

Find a consistent estimator of θ, and prove it is indeed consistent
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Exercise 2: Sufficiency

Let X1, . . . ,Xn i.i.d. from a distribution with pdf

f (x) = e−(x−µ)/σ

σ
· I(x > µ)

Find a two-dimensional sufficient statistic for (µ, σ), and prove it is
indeed sufficient
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Exercise 1: Minimal sufficiency

Let X1, . . . ,Xn i.i.d. from Unif (θ, 2θ), with θ > 0.

Find a minimal sufficient statistic for θ. Is it complete too?
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Exercise 2: Completeness

Let X1, . . . ,Xn i.i.d. from a distribution with pdf

f (x) = θxθ−1 · I(0 < x < 1)

with θ > 0

Find a complete sufficient statistic for θ
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Minimal sufficient M(X) vs complete C(X)

Minimal sufficient: Max data reduction while keeping all info about θ

Complete: abstract property of the family of distributions that C
belongs to, so it’s not directly tied to a likelihood function. Also,
strictly speaking, completeness doesn’t care about preserving all
information about θ, and in fact C(X ) = 3 is trivially complete.

But, if C is sufficient, M(X ) = C(X ) if they (both) exist. So M
minimal sufficient but not complete implies no complete sufficient
statistic exists

Lastly, why is it called ‘complete’? Recall that the vector space of real
functions whose domain is R has inner product 〈f , g〉 =

∫
R fg dx

Does that ring a bell? Indeed E(g(C)) =
∫
R g(C) fθ(x) dx = 〈g(C), fθ〉

Then “E(g(C)) = 0 ∀θ ⇒ g = 0 a.s. ∀θ” means that the functions fθ span
the complete space of functions of C , so the only orthogonal vector is 0
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Another look at MoM and MLE

MoM idea: if dim(θ) = k, set (at least) the first k sample moments
equal to the first k population moments, and solve for θ1, . . . , θk in
terms of the sample moments.

BUT, these equations may not have a solution! In this case, consider
exploring higher moments.

MLE idea: find the (log) likelihood of θ L(θ) (i.e. the joint pdf when
x1, . . . , xn are viewed as fixed) and find the θ∗ that maximizes it

Vast majority of times, this is an unconstrained optimization problem:
set 1st θ-derivative equal to 0. BUT sometimes that doesn’t work
(e.g. no stationary points or there are boundary constraints).

Always check that the θ∗ you found is indeed a maximizer! Usual way:
check d2L(θ)/dθ2 < 0 when evaluated at θ = θ∗
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Exercise 1

Let X1, . . . ,Xn i.i.d. from the pdf fθ(x) = θ
x2 I(x ≥ θ > 0)

Find the MLE and the MoM estimator of θ
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Exercise 2

Let X1, . . . ,Xn i.i.d. from the pdf fθ(x) = 1
θ I(0 ≤ x ≤ θ) with θ > 0

Find the MLE and the MoM estimator of θ. Which one is better in
terms of Mean Squared Error?
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Lecture 1

Convergence in probability

Weak Law of Large Numbers (Thm 5.5.2)

Continuous mapping theorem (Thm 5.5.4)
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Lecture 2

Convergence in distribution

Convergence in distribution vs in probability

Central Limit Theorem (Thm 5.5.14)
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Lecture 3

Slutsky’s theorem (Thm 5.5.17)

1st and 2nd order Delta method (Thm 5.5.24, 5.5.26)

Sufficient statistic
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Lecture 4

Factorization Theorem (Thm 6.2.6)

One-to-One functions of sufficient statistics
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Lecture 5

Exponential family

Full-rank vs curved exponential family

Minimal sufficient statistic + Thm 6.2.13
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Lecture 6

Ancillary statistic

Complete statistic

Ancillary vs Complete
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Lecture 7

Minimal sufficient vs complete sufficient

Basu’s Theorem (Thm 6.2.24)

Thm 6.2.25
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Lecture 8

Method of Moments point estimator

Maximum Likelihood point estimator
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Lectures 9 and 10

Advanced MLE (2D params, constraints, 0 or ∞-many stationary pts)

Mean Squared Error (MSE) of an estimator

Bayes estimator, prior and posterior distributions
Short-cut solution for CB 7.24
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Lecture 11

UMVUE

How to find an unbiased estimator?
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A couple tips

CB page 69: Thm 2.4.1 (Leibnitz’s Rule) useful when taking derivative
on both sides of E (g(T )) = 0 to show g = 0 a.s. so T is complete

CB page 229: Thm 5.4.4 (Formula for pdf of X(j))

CB page 621: Table of common distributions
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Brief Midterm debrief (1/2)

Overall, very good job!

Questions 1 and 4b were the most challenging – please check the
solutions carefully and get back to us should you have any questions

Quick fixes:

Q1 and Q4: when working with absolute values, keep in mind the two
cases: when the inside is non-negative and when it is negative.
Common mistake: only focusing on the non-negative case.
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Brief Midterm debrief (2/2)

Q2: Always see if you can use the ‘proportional to’ shortcut when
deriving the posterior distribution. If the likelihood and prior look
similar in terms of the parameter of interest (like in the exam) you can
drop the constants and greatly simplify your work

Q3: Exponential family gives you sufficiency, but not minimality or
completeness. For these, you need additional conditions. For example,
if in addition we have full rank, then we have completeness too. In
fact, T in a full rank exponential family is not only complete sufficient
but minimal sufficient too.
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CB 7.47 (UMVUE) + Bonus question

Suppose we make n independent measurements of the radius of a
circle, each with a random error ∼ N(0, σ2), with known σ2. Find
the best unbiased estimator (UMVUE) of the area of the circle.
What if σ2 is unknown?

Bonus question: if T is UMVUE of θ, is any one-to-one function g
of T UMVUE of a) θ, or maybe b) g(θ)?
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CB 7.48a (Cramer-Rao Lower Bound)

Let X1, ...,Xn iid Ber(p). Show that the variance of the MLE of p
attains the CRLB. Can we then conclude the MLE of p is in fact
UMVUE?
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Rao-Blackwell x Lehmann-Scheffe

RB
If W(X) is unbiased and S(X) is sufficient for θ, Var(E[W(X) | S(X)]) ≤
Var(W(X)), and E(W(X) | S(X)) is still unbiased (trivial proof).

LS
The unbiased estimator of θ that has the smallest variance must be a
function of a complete sufficient statistic for θ.

RB x LS: If C(X) is complete sufficient for θ, E(W(X) | C(X)) is still
unbiased and has smaller (or equal) variance than any other
unbiased estimator, including E[W(X) | S(X)], which already was an
improvement over W(X)
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CB 7.52b (previous HW exercise)

X1, ...,Xn iid Poisson(λ). Prove that E(S2|X̄ ) = X̄ .
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Hypothesis testing and LRT

Main big ideas of hypothesis testing
Goal: to find evidence for/against a hypothesis and reach a conclusion
Accept vs reject vs not accept vs not reject?

Acceptance and Rejection regions

Example using LRT

X1, ...,Xn iid N(θ, aθ), both a, θ unknown. Find the LRT of H0 : a = 1 vs
H1 : a 6= 1, and its associated rejection region.
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Power function vs Power vs size vs level
Power function
β(θ) := Pθ∈Θ(X ∈ RR)

Power
The probability that H0 is correctly rejected, i.e. Pθ∈Θ1(X ∈ RR)

Size
supθ∈Θ0β(θ) = α

Level
supθ∈Θ0β(θ) ≤ α

Size α implies level α, but the converse is not necessarily true.
Intuition for including sup: worst-case scenario (conservative).
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Example 1

Let X ∼ Beta(θ, 1). We want to test H0 : θ ≤ 1 vs H1 : θ > 1. Consider
the test that rejects H0 iff X > 1/2. Find the power function of this test
and sketch it. What’s the size of this test?
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Example 2 (adapted from this site)

Performance on a math test is reported to be normally distributed with a
mean of 40 and a standard deviation of 9.

You’d like to know whether the average performance in your school differs
from the national average of 40, but you’d only care if the difference is big
enough. How many students do you need to include in your sample to have
power of 80% to detect a difference of 3 points using a two-tailed Z-test
with alpha = 0.05? Hint: You’ll need to know Φ−1(0.975) = 1.96 and
Φ−1(0.2) = −0.84. What if you wanted power of 99% instead?
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UMP and NP Lemma

UMP test
The test with largest power in a given class of tests.
The class we usually consider is the class of level (or size) α tests.
Why?

Neyman-Pearson Lemma
Tells you how to find the size-α UMP test when the hypothesis to be
tested is of the type ‘simple vs simple’ i.e. H0 : θ = θ0 vs H1 : θ = θ1.

Any test that rejects H0 when

f (x |θ1)
f (x |θ0) > k for some k ≥ 0 s.t. Pθ0(X ∈ RR) = α

is a size-α UMP test. Note: if < k then we don’t reject. What if = k?
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Example 1

Let X ∼ Beta(θ, 1). Find the size-α UMP test of H0 : θ = 1 vs H1 : θ = 2.
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MLR and Karlin-Rubin Theorem

MLR
Let T (X ) be a statistic. A family of pdf’s or pmf’s parametrized by θ has a
MLR in T (X ) if for all θ2 > θ1 we have fθ2 (x)

fθ1 (x) is a non-decreasing function
of T (x), on the set of x ’s s.t. at least one of fθ2(x) or fθ1(x) is positive.

Karlin-Rubin
Suppose that the parametric family of pdf’s or pmf’s has MLR in the
statistic T . The test rejecting H0 iff T > c is a UMP test of size
α = Pθ0(T > c) for testing H0 : θ ≤ θ0 vs H1 : θ > θ0.
Extension: flip all inequalities.
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Example 2

Let X ∼ Beta(θ, 1). Find a UMP test of H0 : θ ≤ 1 vs H1 : θ > 1 in case
such a test exists.
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Closing thoughts on MLR / Karlin-Rubin

2 equivalent approaches
First find T sufficient and its distribution, then take ratio of likelihoods
First take ratio of likelihoods and then find T and its distribution

MLR implies β(θ) is monotonic in θ
‘Lemma B’ in Prof. Jun Shao’s notes: Suppose that the pdf or pmf of X is
in a family parametrized by θ ∈ R with MLR in T (X ). If ψ(t) is a
nondecreasing (respectively, nonincreasing) function of t, then
g(θ) = E [ψ(T )] is a nondecreasing (respectively, nonincreasing) function of
θ.
For the case H0 : θ ≤ θ0, consider ψ(t) = I(t > c).
For the case H0 : θ ≥ θ0, consider ψ(t) = I(t < c).
This means that we don’t need to prove supθ∈Θ0 β(θ) = β(θ0) when using
Karlin-Rubin.
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p-value

Thm 8.3.27
Let W (X ) be a statistic such that large values give evidence that H1 is true.
For each observed sample value x , define
p(x) = supθ∈Θ0 Pθ(W (X ) ≥W (x)). Then p(X ) is a valid p-value.
Remarks:

This is the most popular characterization of p-value, but there are
others
If p(X ) is a valid p-value, then the test that rejects H0 iff p(X ) ≤ α is
a level α test
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Example 1

Let X ∼ Ber(θ). We wish to test H0 : θ ≤ 0.5 vs H1 : θ > 0.5. We observe
7 successes out of 10 trials. Construct a reasonable test statistic W (X ) and
calculate its associated p-value.
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Confidence intervals
Main idea
Construct an interval of the form C(X ) := [L(X ),U(X )] such that
Pθ(θ ∈ C(X )) is large – say, 95%. Note: C(X ) is random (depends on your
sample), while θ is fixed (but unknown).

Coverage probability
The probability that your random confidence interval contains the true
parameter, i.e.

Pθ(θ ∈ C(X ))

Confidence coefficient
The probability that your random confidence interval contains the true
parameter in the ‘worst-case scenario’, i.e.

inf
θ

Pθ(θ ∈ C(X ))
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Example 2

Let X ∼ Beta(θ, 1). Let Y = −[log(X )]−1. Calculate the confidence
coefficient of the interval [y/2, y ].
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Inverting a test
Relationship between Acceptance Region and Confidence Set

One-to-one correspondence
(x1, ..., xn) ∈ A(θ0) ⇐⇒ θ0 ∈ C(x1, ..., xn)
Inverting the AR of a level-α test gives you a 1− α confidence set

Intuition?
The hypothesis test fixes the parameter value and asks what sample values
are consistent with that fixed value θ0 (i.e. the AR).
The confidence set fixes the sample values and asks what parameter values
would make this sample values most plausible (i.e. the C(x)).

Mechanics in practice
Start with RR(θ0), then find AR(θ0) = {x : θ0 ∈ C(x)} = {x : C(x) 3 θ0},
then finally get C(x) = {θ : x ∈ AR(θ)} = {θ : AR(θ) 3 x}
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Pivotal quantities

Definition
A random variable Q(X1, ...,Xn, θ) is a pivotal quantity if its distribution is
independent of any parameter.

Note that a pivotal quantity is NOT a statistic, since (in general) its
definition will involve the parameter(s).

So, a pivotal quantity is in general not an ancillary statistic even if both
random variables have a distribution that is independent of the parameters –
unless Q happens not to involve θ.
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Example 1

Let X ∼ Beta(θ, 1). Find a pivotal quantity and use it to set up a
confidence interval C(X ) = [L(X ),U(X )] with confidence coefficient of
0.24.
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Shortest CI’s
Main idea
Shorter CI’s are usually preferred because they tend to be more informative:
saying that a real-valued parameter is between −∞ and ∞ with very high
confidence is pretty much useless.

Thm 9.3.2
For a unimodal pdf f (x) (very common case), if the CI [a, b] satisfies:
(1)

∫ b
a f (x) dx = 1− α

(2) f (a) = f (b) > 0
(3) a ≤ x∗ ≤ b where x∗ is a mode of the pdf
then, [a, b] is the shortest CI satisfying (1).
Note 1: Careful when dealing with scale families! Replace (2) by
a2f (a) = b2f (b) > 0 (see CB page 444).
Note 2: unimodal includes flat peaks, even the uniform would be (trivially)
‘unimodal’.
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Example 2

Find L(X) and U(X) in Example 1 so that C(X ) is as short as possible.
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Revisiting Consistency

Definition and strategies to prove consistency
See Discussion 2

Thm 10.1.5
Let Tn be a consistent estimator of θ. Then if limn→∞ an = 1 and
limn→∞ bn = 0,

Un := anTn + bn

is still consistent for θ.
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Consistency of MLE’s

Thm 10.1.6
Under several regularity conditions, MLE’s are consistent estimators.
Note: if the pdf of the data-generating process belongs to the Exponential
Family (e.g. Normal, Exponential, Gamma,. . . ) then all those conditions are
automatically satisfied, and hence θ̂MLE is consistent for θ.
What’s more, g(θ̂MLE ) is consistent for g(θMLE ), as long as g is continuous.
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Limiting vs asymptotic variance
Def: Limiting variance
Let Tn be an estimator.
limn→∞ knVar(Tn) = τ2 ∈ (0,∞)
We call τ2 the limiting variance of Tn

Def: Asymptotic variance
Let Tn be an estimator.
Suppose limn→∞ kn(Tn − g(θ)) = N(0, σ2)
We call σ2 the asymptotic variance of Tn

Difference? Very important: limiting variance (morally) takes the limit of
the variance as n→∞, whereas the asymptotic variance is the variance of
the limiting distribution of Tn, i.e. you don’t take the limit of the variance!
The two ‘flavors’ above may coincide, but not always! Second flavor is
usually more useful, e.g. it’s used in the definition of asymptotic efficiency
of an estimator.
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Asymptotic efficiency of MLE’s

Def: Asymptotic efficiency
An estimator Tn of g(θ) is asymptotically efficient if√

n(Tn − g(θ))→ N(0,CRLB)

Thm 10.1.12
Under a long list of conditions (which includes those in Thm 10.1.6), MLE’s
are asymptotically efficient.
HOWEVER, all those conditions are immediately satisfied if the pdf of the
data-generating process belongs to the Exponential Family (e.g. Normal,
Exponential, Gamma,. . . )

In summary, if Exponential Family, MLE estimator is BOTH consistent and
asymptotically efficient.
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Example: Extension of example in class
Let X1, ...,Xn iid with E (X ) = µ <∞ and V (X ) = σ2 <∞.
a) Find the limiting variance and the asymptotic variance of the MoM

estimator of µ. Hint: CLT

b) Consider an arbitrary differentiable function g . What can we say about
the limiting variance and the asymptotic variance of this function of
the MoM estimator? Hint: Delta method
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Q & A
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