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Introduction
Can view the negative log-likelihood −

∑n
i=1 log pθ(xi) as the sum of

loss functions measuring the loss incurred when using pθ to model the
true distribution of xi , which is given by q.

Risk: the expected value of a loss function. The risk of a model using
the negative log-likelihood as loss function is

R(q, pθ) = Ex∼q(− log pθ(x)) = −
∫

q(x) log pθ(x) dx

Excess risk: the risk of a given model in excess of that of the true
model. In our context,

R(q, pθ) − R(q, q) = Ex∼q

(
log q(x)

pθ(x)

)
=

∫
q(x) log q(x)

pθ(x) dx

Note that this is precisely the KL divergence of pθ from q, termed
D(q||pθ). As such, the excess risk is always non-negative.
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Minimum KL divergence and MLE

Consider θ∗ ∈ arg minθ D(q||pθ)

The density pθ∗ is the member of the parametric family of distributions
pθ that is closest in KL divergence to the true data-generating
distribution q.

Does MLE get you θ∗? In general, no, but it gets arbitrarily close
asymptotically (under mild assumptions).
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Convergence of MLE to minimum-KL distribution
TL;DR: Finding the MLE is finding the parameter value that brings the
assumed distribution pθ the closest to the true distribution q based on a
set of i.i.d. samples drawn from q. As the number of samples increases,
the MLE tends to the parameter value that is optimal in the KL sense.

Note: there is no guarantee that pθ∗ will match q even if you got
infinite samples (why?). What we do have is

arg max
θ

n∏
i=1

pθ(xi) = arg min
θ

−
n∑

i=1
log pθ(xi)

= arg min
θ

n∑
i=1

log q(xi) − log pθ(xi) = arg min
θ

n∑
i=1

log q(xi)
pθ(xi)

Now, by the Strong Law of Large Numbers (SLLN)∗, for any θ ∈ Θ,
1
n

n∑
i=1

log q(xi)
pθ(xi)

→ D(q||pθ) w .p.1 as n → ∞
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Caveat

Note∗: θ̂n is a random variable that depends on the sample
{x1, . . . , xn} observed, so the independence assumption in the standard
SLLN does not hold. However, convergence still holds under mild
regularity conditions on the likelihood function. For more details, see
Aad W van der Vaart and Jon A Wellner. Weak convergence and
empirical processes with applications to statistics. Journal of the Royal
Statistical Society-Series A Statistics in Society, 160(3):596–608, 1997.
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